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Introduction
The study of nonlinear systems is of great inter-

est to scientists across a wide variety of disciplines.1–9

Initiated, in some respects, by the seminal work of
Poincare, the study of nonlinear systems experienced
a rapid growth at the turn of the century and continues
to grow as the fundamental concepts of nonlinear dy-
namics are applied to a wide range of problems. The
field known as dynamical systems provides a unified
interpretation of nonlinear dynamics based on topolog-
ical concepts.10–12 This mathematical interpretation
of nonlinear dynamical processes provides a common
language for the interpretation of nonlinear phenom-
ena for scientists with diverse technical backgrounds.

Although dynamical system theories provide an im-
portant framework for the study of nonlinear systems,
the complexity of a nonlinear system and associated is-
sues are specific functions of the system of interest and
the particular discipline associated with that system.
The complexity of a system is defined by the level of
nonlinearity and the number of variables (or degrees of
freedom) of the system. Systems with a small number
of degrees of freedom can range from a simple RC cir-
cuit, which is a linear, single degree-of-freedom system,
to the van der Pol oscillator, a two-degree-of-freedom
nonlinear system which exhibits limit cycle oscillations
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(LCO). Turbulent fluids13 and real-world structural
systems14 are often characterized by a large number
of degrees of freedom and a resultant spatio-temporal
complexity. For nonlinear systems, treatment of multi-
ple degrees of freedom and multiple inputs and outputs
must be handled appropriately due to potential cross-
coupling and energy exchange.15–17 The analysis of
nonlinear fluid dynamics and nonlinear structural dy-
namics poses a significant challenge for the nonlinear
dynamicist. The coupling of these two complex sys-
tems into a nonlinear fluid-structure interaction, is,
potentially, one of the most complicated problems in
nonlinear dynamics.18

Nonlinear fluid-structure phenomena may be the
result of complex fluid dynamics including shocks,
viscous effects, and separated flows. Nonlinear fluid-
structure phenomena also may be the result of complex
structural dynamics including large deformations and
material nonlinearities. A combination of complex
fluid dynamics and complex structural dynamics may
lead to nonlinear fluid-structure phenomena as well.
In order to understand, and therefore predict, these
highly complex nonlinear phenomena, computational
and experimental methods are being developed and
applied.19 However, computational methods tend to
suffer from excessively high computational costs and
are not well suited for use in a multidisciplinary, pre-
liminary design environment. Experimental methods
rely heavily on traditional linear processes for data
analysis, resulting in an inability to measure and,
therefore interpret, nonlinear phenomena.

In order to address these challenges, nonlinear sys-
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tem identification techniques are being applied to
problems in unsteady aerodynamics, nonlinear struc-
tural dynamics, and aeroelasticity.19–24 Three system
identification techniques currently under investigation
are Proper Orthogonal Decomposition (POD), Har-
monic Balance (HB), and Volterra theory. This pa-
per discusses recent advances in nonlinear aeroelas-
ticity using nonlinear system identification techniques
based on the Volterra theory. Details regarding re-
cent developments and applications of the POD and
HB methods can be found in the references.21 A
topic of recent interest is the potential development
of hybrid POD/Volterra methods. These hybrid tech-
niques would combine the spatial resolution possible
with POD methods with the low dimensionality and
computational efficiency of Volterra methods.21,25

There are two general categories for system
identification techniques: parametric and non-
parametric.26–29 A parametric method assumes a
particular model of a system and proceeds to de-
fine the coefficients that correspond to that particular
model. A non-parametric model seeks to develop the
best functional representation of a system based on
input-output mappings. Systems also may be clas-
sified as being linear or nonlinear, autonomous or
non-autonomous, and deterministic or stochastic. It
is essential that a system of interest be properly clas-
sified as that will determine the method to be used
for its identification. The identification of a nonlin-
ear system via the Volterra theory is a non-parametric
approach. Additional assumptions associated with the
Volterra theory are discussed in the paper.

Experimental investigation of complex flight dy-
namic and aeroelastic phenomena are best understood
by studying the underlying unsteady aerodynamics.
To this end, experiments designed to measure the un-
steady aerodynamic response of various configurations
provide significant and valuable information.30–33 Ex-
perimental results are compared to various types of
numerical analyses (such as CFD) to provide insight
into the underlying physics of the problem.

Recent applications of the Volterra theory to exper-
imental aerodynamics and aeroelasticity are providing
valuable knowledge regarding nonlinear aeroelastic be-
havior. In particular, the experimental identification
of aerodynamic impulse responses may provide insight
regarding the dominant flow physics of the experiment
as well as an automatic data filtering capability.34 The
application of higher-order spectra (HOS) to flutter
data35 and the identification of Volterra kernels from
flight flutter experiments36–38 are additional examples
of this promising application for the Volterra theory.

The goal of this paper is to present a summary of
results on recent applications of the Volterra theory to
the experimental identification of nonlinear aeroelastic
systems. The paper begins with background informa-
tion and theoretical details of the Volterra theory of

nonlinear systems. As part of the experimental identi-
fication of nonlinear aeroelastic systems, the identifica-
tion of unsteady aerodynamic impulse responses from
experimental unsteady aerodynamic measurements is
presented.34 The paper presents recent results regard-
ing the application of the Volterra theory, including
higher-order spectra (HOS), to wind-tunnel and flight
flutter test data. The paper concludes with recom-
mendations for future research.

Volterra Theory

Nonlinear system identification techniques may be
applied to problems in nonlinear aeroelasticity in sev-
eral ways depending on the nature of the nonlinear
system under investigation. A nonlinear aeroelastic
system may be represented by one of the following
combinations of systems: a nonlinear aerodynamic
system with a linear structural system (typical of an
aeroelastic CFD code such as CFL3Dv6.0); a lin-
ear aerodynamic system with a nonlinear structural
system (modeling of control surface freeplay for an
aircraft flying at subsonic conditions, for example);
or a nonlinear aerodynamic system with a nonlinear
structural system (large motions of an aircraft flying
at transonic conditions, for example). As a result,
nonlinear system identification techniques are usually
applied to the nonlinear component of these nonlinear
aeroelastic systems.

For computational methods, aerodynamic responses
can be mathematically isolated from structural dy-
namic responses. This enables the application of
system identification techniques to the nonlinear aero-
dynamic system, or the nonlinear structural dynamic
system, or both. For experimental methods, the mea-
sured aeroelastic data may not be easily separated
into aerodynamic and structural dynamic components.
As a result, the application of system identification
techniques to experimental data may result in the
identification of nonlinear parameters that are differ-
ent from the parameters identified for an analogous
computational problem. Application of Volterra-based
system identification techniques to problems in compu-
tational aeroelasticity can result in the identification
of aerodynamic Volterra kernels, structural Volterra
kernels, or aeroelastic Volterra kernels. Application
of Volterra-based system identification techniques to
problems in experimental aeroelasticity typically will
result in the identification of aeroelastic Volterra ker-
nels. An important exception to this generality would
be the measurement of unsteady aerodynamic data us-
ing a rigid wind-tunnel model, for example.

In the section that follows, some background in-
formation is provided to assist the general reader in
understanding the genealogy and variety of applica-
tions of Volterra-based methods.
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Background

A valuable and important characteristic of the
Volterra theory of nonlinear systems is that the the-
ory is well defined in the time and frequency domains
for continuous- and discrete-time systems. In partic-
ular, this theory has found wide application in the
field of nonlinear discrete-time systems39 and non-
linear digital filters for telecommunications and im-
age processing.40 However, application of nonlinear
system theories, including Volterra theory, to mod-
eling nonlinear unsteady aerodynamic responses has
not been extensive. One approach for modeling un-
steady transonic aerodynamic responses is Ueda and
Dowell’s41 application of describing functions, which
is a harmonic balance technique involving one har-
monic. Tobak and Pearson42 apply the continuous-
time Volterra concept of functionals to indicial (step)
aerodynamic responses to compute nonlinear stability
derivatives. Jenkins43 also investigates the determina-
tion of nonlinear aerodynamic indicial responses and
nonlinear stability derivatives using similar functional
concepts. Stalford et al44 develop Volterra models
for simulating the behavior of a simplified nonlinear
stall/post-stall aircraft model and the limit cycle oscil-
lations of a simplified wing-rock model. In particular,
they establish a straightforward analytical procedure
for deriving the Volterra kernels from known nonlin-
ear functions. Clearly, development and application of
Volterra-based concepts depends on the identification
of the associated kernels for the problem of interest.

The problem of Volterra kernel identification is
addressed by many investigators, including Rugh,45

Clancy and Rugh,46 Schetzen,47 and by Boyd, Tang,
and Chua.48 There are several ways of identifying
Volterra kernels in the time and frequency domains
that can be applied to continuous- or discrete-time
systems. Tromp and Jenkins49 use indicial (step) re-
sponses from a Navier-Stokes CFD code and a Laplace
domain scheme to identify the first-order kernel of a
pitch-oscillating airfoil. Rodriguez50 generates real-
izations of state-affine systems, which are related to
discrete-time Volterra kernels, for aeroelastic analyses.
Assuming high-frequency response, Silva51 introduces
the concept of discrete-time, aerodynamic impulse re-
sponses, or kernels, for a rectangular wing under lin-
ear (subsonic) and nonlinear (transonic) conditions.
Silva52 improves upon these results by extending the
methodology to arbitrary input frequencies, result-
ing in the first identification of discrete-time impulse
responses of an aerodynamic system. However, po-
tential disadvantages of the Volterra theory include
input amplitude limitations related to convergence is-
sues and the need for higher order kernels.53 It is
important, therefore, to develop methods that esti-
mate the highest significant order of a Volterra series
kernel representation in order to minimize the amount
of computational effort for a given system.54

In his dissertation, Silva53 discusses the funda-
mental differences between traditional, continuous-
time theories and modern discrete-time formulations
that allow the identification of discrete-time kernels.
The discrete-time methods are then applied to var-
ious nonlinear systems including a nonlinear Riccati
circuit, the viscous Burger’s equation, an aeroelas-
tic wing in transonic flow using a transonic small-
disturbance code, and a supercritical airfoil undergo-
ing large plunge motions at transonic conditions using
a Navier-Stokes flow solver with the Spalart-Allmaras
turbulence model.

With respect to experimental applications, Kurdila
et al55 applied an efficient wavelet-based algorithm
to the extraction of the nonlinear Volterra kernels
of an aeroelastic system exhibiting limit cycle oscil-
lations (LCO). Recent applications of the Volterra
theory to flight test data36–38 clearly demonstrate
the applicability of the Volterra theory to these chal-
lenging problems. The experimental identification of
aerodynamic impulse responses also has been accom-
plished recently34 and the method has demonstrated
a valuable data filtering capability. The application of
higher-order spectra (HOS), the frequency domain ver-
sion of the Volterra theory, to nonlinear wind-tunnel
flutter data is an example of the potential of these
methods as well. There is increased interest in the
development of these experimental techniques for use
in various experimental settings. The identification of
LCO during flight flutter tests is a case in point.

Volterra Theory

The literature on Volterra theory is significant, in-
cluding several texts.45,56–58 Discussion of the the-
ory begins by considering time-invariant, nonlinear,
continuous-time systems. Of interest is the response of
the system about an initial state w(0) = W0 due to an
arbitrary input u(t) (we take u as a real, scalar input,
such as pitch angle of an airfoil) for t ≥ 0. As applied
to these systems, Volterra theory yields the response

w(t) = h0 +
∫ t

0

h1(t− τ)u(τ)dτ

+
∫ t

0

∫ t

0

h2(t− τ1, t− τ2)u(τ1)u(τ2)dτ1dτ2+

N∑
n=3

∫ t

0

..

∫ t

0

hn(t− τ1, .., t− τn)u(τ1)..u(τn)dτ1..dτn.

(1)
The Volterra series in expression (1) contains three
classes of terms. The first is the steady-state term sat-
isfying the initial condition, h0 = W0. Next is the first
response term,

∫ t

0
h1(t− τ)u(τ)dτ , where h1 is known

as the first-order kernel (or the linear/linearized unit
impulse response). This term represents the convolu-
tion of the first-order kernel with the system input for
times between 0 and t. Lastly are the higher order
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terms involving the second-order kernel, h2, through
the nth-order kernel, hn. The existence of these terms
is an indication that the system is nonlinear.53,59

The convergence of the Volterra series is dependent
on input magnitude and the degree of system non-
linearity. Boyd60 shows that the convergence of the
Volterra series cannot be guaranteed when the maxi-
mum value of the input exceeds a critical value, which
is system dependent. Of course, the issue of conver-
gence is important, since the Volterra series must be
truncated for analysis of practical systems. Silva53,59

and Raveh et al.61 consider a weakly nonlinear for-
mulation, where it is assumed that the Volterra series
can be accurately truncated beyond the second-order
term:

w(t) = h0 +
∫ t

0

h1(t− τ)u(τ)dτ

+
∫ t

0

∫ t

0

h2(t− τ1, t− τ2)u(τ1)u(τ2)dτ1dτ2. (2)

For linear systems, only the first-order kernel is
non-trivial, and there are no limitations on input am-
plitude.

Silva53 derives the first- and second-order kernels,
which are presented here in final form in terms of var-
ious response functions:

h1(t) = 2w1(t1)− 1
2
w2(t1), (3)

h2(t1, t2) =
1
2

(w1(t1, t2)−w1(t1)−w1(t2)) . (4)

In (3), w1(t1) is the time response of the system to
a unit impulse applied at time 0 and w2(t1) is the
time response of the system to an impulse of twice
unit magnitude at time 0. If the system is linear, then
w2 = 2w0 and h1 = w0. If the system is nonlinear,
then this identification of the first-order kernel cap-
tures an amplitude-dependent nonlinear effect. The
identification of the second-order kernel is more de-
manding, since it is dependent on two parameters.
Assuming t2 > t1 in (4), w1(t2) is the response of
the system to an impulse at time t2 and w1(t1, t2) is
the response of the system to an impulse at t1 and
an impulse at t2. It is clear that, for a linear system
where superposition holds, the second-order kernel is
identically zero. For a nonlinear system, the second-
order kernel can be interpreted as a deviation from
superposition, i.e. linear behavior.

Time is discretized with a set of time steps of equiv-
alent size. Discrete time increments are indexed from
0 (time 0) to n (time t), and the evaluation of w at
time n is denoted by w[n]. The convolution in discrete
time is

w[n] = h0 +
N∑

k=0

h1[n− k]u[k] (5)

+
N∑

k1=0

N∑
k2=0

h2[n− k1, n− k2]u[k1]u[k2]. (6)

where N is the total time record of interest.
It should be noted that an important conceptual

breakthrough in the development and application of
the discrete-time Volterra theory as a ROM tech-
nique is the distinction between a continuous-time
unit impulse response and a discrete-time unit impulse
response.53,59 The continuous-time unit impulse re-
sponse is an abstract function typically defined with
an amplitude that reaches infinity while its width ap-
proaches zero with an integral equal to unity. This
function is difficult, if not impossible, to apply in prac-
tical applications (i.e., discrete-time problems). The
discrete-time unit impulse response (known as a unit
sample response), on the other hand, is specifically de-
signed for discrete-time (i.e., numerical) applications.
This function is defined as having a value of unity at
one point in time and zero everywhere else. This is
clearly a simpler function to implement in a numerical
setting. The proof of this and details regarding the
very powerful unit sample response can be found in
any modern text on digital signal processing.62

The identification of linearized and nonlinear
Volterra kernels is an essential step in the develop-
ment of models based on Volterra theory, but it is not
the final step. Ultimately, these functional kernels can
be transformed into linearized and nonlinear (bilinear)
state-space systems that can be easily implemented
into other disciplines such as controls and optimiza-
tion.21,22,34,45,53,63 Recently, linearized state-space
models of an unsteady aerodynamic system have been
developed20 while research into the development of
nonlinear state-space models continues.51

Higher-Order Spectra (HOS)

The frequency-domain version of the Volterra the-
ory, also known as higher-order spectra (HOS), is
simply the Fourier transform of the series shown in
(1). Therefore, the Fourier transform of the first-
order kernel (for a linear system) is the frequency
response function of the system. Higher-order kernels
are Fourier transformed into higher-order frequency
response functions, referred to as HOS. The primary
benefit of these higher-order frequency response func-
tions is that they provide information regarding the
interaction of frequencies due to a nonlinear process.
For example, bispectra (the frequency-domain version
of the time-domain second-order kernel) have been
used in the study of grid-generated turbulence to iden-
tify the nonlinear exchange of energy from one fre-
quency to another. Linear concepts, by definition,
cannot provide this type of information. In addition,
some very interesting and fundamental applications
using the frequency-domain Volterra theory64,65 and
experimental applications of Volterra methods66,67 are
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providing new “windows” on the world of nonlinear
aeroelasticity.

In the recent work by Hajj and Silva,35,68 the aero-
dynamic and structural aspects of the flutter phe-
nomenon of a wind-tunnel model are determined via
a frequency domain analysis based on a hierarchy of
spectral moments. The power spectrum is used to de-
termine the distribution of power among the frequency
components in the pressure, strain and acceleration
data. The cross-power spectrum, linear coherence,
and phase relation of the same frequency components
between different signals are used to characterize the
bending and torsion characteristics of the model. The
nonlinear aspects of the aerodynamic loading are de-
termined from estimates of higher-order spectral mo-
ments, namely, the auto- and cross-bispectrum.

For a discrete, stationary, real-valued, zero-mean
process, the auto-bispectrum is estimated as69

B̂xxx[l1, l2] =
1
M

M∑
k=1

∣∣∣X(k)
T [l1 + l2]X

∗(k)
T [l1]X

∗(k)
T [l2]

∣∣∣2
(7)

where X
(k)
T [l] is the Discrete Fourier Transform of the

kth ensemble of the time series x(t) taken over a time
T and M is the number of these ensembles. The auto-
bispectrum of a signal is a two-dimensional function
of frequency and is generally complex-valued. In av-
eraging over many ensembles, the magnitude of the
auto-bispectrum will be determined by the presence of
a phase relationship among sets of the frequency com-
ponents at l1, l2, and l1+l2. If there is a random phase
relationship among these three components, the auto-
bispectrum will average to a very small value. Should
a phase relationship exist among these frequency com-
ponents, the corresponding auto-bispectrum will have
a large magnitude.70 Because a quadratic nonlinear
interaction between two frequency components, l1 and
l2, yields a phase relation between them and their
summed component, l1 + l2, the auto-bispectrum can
be used to detect a quadratic coupling or interaction
among different frequency components of a signal. The
level of such coupling in a signal can then be associated
with a normalized quantity of the auto-bispectrum,
called the auto-bicoherence and defined as

b2
xxx[l1, l2]=

1
M

M∑
k=1

∣∣∣X(k)
T [l1 + l2]X

∗(k)
T [l1]X

∗(k)
T [l2]

∣∣∣2
1
M

M∑
k=1

∣∣∣X(k)
T [l1]X

(k)
T [l2]

∣∣∣2 1
M

M∑
k=1

∣∣∣X(k)
T [l1+l2]

∣∣∣2
(8)

By Schwarz inequality, the value of b2
xxx[l1, l2] varies

between zero and one. If no phase relationship exists
among the frequency components at l1, l2, and l1 + l2,
the value of the auto-bicoherence will be near zero. If
a phase relationship does exist among the frequency
components at l1, l2, and l1 + l2, then the value of
the auto-bicoherence will be near unity. Values of the

auto-bicoherence between zero and one indicate partial
quadratic coupling.

For systems where multiple signals are considered,
detection of nonlinearities can be achieved by using the
cross-spectral moments. For two signals x(t) and y(t),
their cross-bispectral density function is estimated as

B̂yxx[l1, l2] =
1
M

M∑
k=1

∣∣∣Y (k)
T [l1 + l2]X

∗(k)
T [l1]X

∗(k)
T [l2]

∣∣∣2
(9)

where X
(k)
T [l] and Y

(k)
T [l] are the Discrete Fourier

Transforms of the kth ensemble of the time series x(t)
and y(t), respectively, over a time T . The cross-
bispectrum provides a measure of the nonlinear re-
lationship amongst the frequency components at l1
and l2 in x(t) and their summed frequency compo-
nent, l1 + l2, in y(t). Similar to the auto-bispectrum,
the cross-bispectrum of signals x(t) and y(t) is a two-
dimensional function in frequency and is generally
complex-valued. In averaging over many ensembles,
the magnitude of the cross-bispectrum will also be
determined by the presence of a phase relationship
among sets of the frequency components at l1, l2,
and l1 + l2. If there is a random phase relationship
among the three components, the cross-bispectrum
will average to a very small value. Should a phase re-
lationship exist amongst these frequency components,
the corresponding cross-bispectral value will have a
large magnitude. The cross-bispectrum is then able
to detect nonlinear phase coupling among different
frequency components in two signals because of its
phase-preserving effect.

Similarly to defining the auto-bicoherence, one can
define a normalized cross-bispectrum to quantify the
level of quadratic coupling in two signals. This normal-
ized value is called the cross-bicoherence and is defined
as

b2
yxx[l1, l2]=

1
M

M∑
k=1

∣∣∣Y (k)
T [l1 + l2]X

∗(k)
T [l1]X

∗(k)
T [l2]

∣∣∣2
1
M

M∑
k=1

∣∣∣X(k)
T [l1]X

(k)
T [l2]

∣∣∣2 1
M

M∑
k=1

∣∣∣Y (k)
T [l1+l2]

∣∣∣2
(10)

If no phase relationship exists amongst the frequency
components at l1, l2 in x(t) and the frequency compo-
nent at l1+l2 in y(t), the value of the cross-bicoherence
will be near zero. If a phase relationship does ex-
ist amongst these frequency components, the value
of the cross-bicoherence will be near unity. Values
of cross-bicoherence between zero and one indicate
partial quadratic coupling. A digital procedure for
computing the auto and cross-bicoherence is given by
Kim and Powers69 and is summarized by Hajj et al.71
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Fig. 1 Side view of the Oscillating Turntable
(OTT).

Description of Experimental Hardware
Oscillating Turntable (OTT)

The OTT is a unique research tool at NASA Lang-
ley’s Transonic Dynamics Tunnel (TDT) that provides
the ability to oscillate relatively large, semispan wind-
tunnel models in pitch at frequencies up to 40 Hz. This
research tool has been designed specifically for the ac-
quisition of unsteady pressure and loads data on rigid
wind-tunnel models in order to study flow phenom-
ena associated with flutter, LCO, shock dynamics, and
nonlinear unsteady aerodynamic effects on a wide va-
riety of aerospace vehicle configurations at transonic
speeds. Models may be oscillated sinusoidally at con-
stant or varying frequencies, be subjected to a step
input, or undergo user-defined motions. It is antic-
ipated that unsteady pressure measurements due to
precisely controlled model motions will provide valu-
able data for CFD correlation and aircraft design with
respect to unsteady aerodynamic/aeroelastic phenom-
ena.31

Figure 1 highlights key components of the OTT.
The OTT utilizes a powerful rotary hydraulic actua-
tor, rated for 495,000 in-lbf, and a digital Proportional,
Integral, Derivative, Feedforward (PIDF) control sys-
tem to position and oscillate models. Power for the
OTT is supplied by a 3000 psi, 150 gpm hydraulic
power unit which is located outside the tunnel pres-
sure shell.

Rigid Semispan Model (RSM)

The RSM planform is a 1/12th scale configuration
based on an early design known as the Reference
H configuration that was a component of the High
Speed Research (HSR) program. Model airfoil shapes
were based on those of the Reference H, with the
model wing thickness being increased to a constant
4% thickness-to-chord ratio in order to accommodate
pressure instrumentation atthe wing tip. The model

Fig. 2 Planform, model details, and instrumenta-
tion layout for the RSM wind-tunnel model.

was designed to be very stiff to allow the measurement
of aerodynamic properties with only negligible effects
of structural deformations.

Figure 2 shows the planform layout and main com-
ponents of the RSM including the OTT mount.

The instrumentation layout for the RSM (visible in
Figure 2) consisted of 131 insitu unsteady pressure
transducers located at the 10, 30, 60, and 95% span
stations. Six additional unsteady pressure transduc-
ers were installed at the 20% chord station for the 20,
45, and 75% span stations for both upper and lower
surfaces. Channels were carved into the foam core to
accommodate the wiring for the instrumentation. In-
strumentation also included accelerometers installed
throughout the wing. The fuselage fairing used for
testing the RSM on the OTT was instrumented with
unsteady pressure transducers.

A flexible but otherwise identical version of this
model, known as the Flexible Semispan Model (FSM),
was fabricated and tested in the TDT in the mid-
1990’s. The FSM encountered flutter that resulted in
structural failure of the model. Details regarding the
FSM and flutter testing of the FSM can be found in
the references.30 The test data from the flutter test
of the FSM is analyzed using higher-order spectra by
Hajj and Silva,35 summarized in a subsequent section
of this paper.

Experimental Results
RSM on the OTT

Unsteady pressure measurements were made on the
RSM while the model underwent pitch oscillations on
the OTT at frequencies from 1 to 10 Hz. In addition,
unsteady pressures were acquired during RSM/OTT
step inputs in order to provide data to compute aero-
dynamic impulse responses.

The identification of experimental unsteady aerody-
namic (pressure) ROMs can be performed by using the
same techniques used to identify the computational
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unsteady aerodynamic ROMs. The Volterra theory of
nonlinear systems is used as the basis for modeling the
linear and nonlinear dynamic response of the unsteady
aerodynamic system under investigation, as described
in the references.

For the present study, the identification of experi-
mental unsteady aerodynamic impulse responses will
be limited to the first-order, or linearized, kernel. It
is referred to as a linearized kernel since identification
of the kernel (impulse response) may occur about a
nonlinear steady-state condition (such as a transonic
Mach number). Future research will focus on the iden-
tification of the second-order kernel.

The identification of the experimental unsteady
aerodynamic impulse responses (first-order kernel) will
consist of the deconvolution of a given input/output
pair. The input, in this case, is a sequence of pos-
itive and negative step inputs in pitch applied using
the OTT and the output is any of several measured
pressure responses from the wind-tunnel models. De-
convolution is then used to extract the impulse re-
sponse for the given input/output pair. For the given
OTT step input, an impulse response can be identified
for each pressure measurement (sensor) on the wind-
tunnel model.

Once the impulse response has been generated, con-
volution is used to predict the pressure response due
to sinusoidal inputs in pitch at various frequencies.34

The measured results are compared to the predicted
results (via convolution) to validate the approach.

For the sake of brevity and to demonstrate the feasi-
bility of the method, results are presented for only one
pressure measurement located on the upper surface of
the RSM at the 60% span location and the 30% chord
station. The data was acquired at a Mach number (M)
of 0.8, a dynamic pressure (q) of 150 psf, and with the
RSM at zero degrees angle of attack.

Figure 3 presents the step pitch input commanded
to the OTT and the resultant pressure response at
the pressure transducer location mentioned above. Al-
though a theoretical step input consists of an infinite
slope where the step occurs, a physically realizable step
input, such as that commanded by the OTT, will be
limited by the pitch inertia, stress, and load limita-
tions of the model undergoing pitch. As can be seen,
a step input that closely approaches a theoretical step
input can, in fact, be applied by the OTT.

Using the sequence of step pitch motions of the OTT
as the input and the unsteady pressure measurement
as the output, deconvolution is applied to identify
the unsteady aerodynamic impulse response. Figure 4
presents the time- and frequency-domain versions of
the pressure impulse response identified via deconvo-
lution. As can be seen in Figure 4(b), the identified im-
pulse response exhibits significant frequency content,
as is to be expected for an impulse response. An anal-
ysis of the unsteady aerodynamic impulse responses
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Fig. 3 Commanded pitch motion and resultant
pressure response on the upper surface of the RSM
at 60% span and 30% chord at M=0.8, q=150 psf.

at all pressure transducer locations can provide a spa-
tial mapping of the frequency characteristics of a given
configuration at a given test condition. This type of
spatial mapping may be useful for the design and op-
timal placement of various flow control devices.

Upon identification, the unsteady aerodynamic im-
pulse response can then be used to predict the un-
steady aerodynamic response due to any OTT input
using convolution and the impulse response of Fig-
ure 4. In the following figures, comparisons are made
between predicted unsteady aerodynamic responses
and the measured responses for several sinusoidal OTT
motions.

Figure 5 presents the comparison between the mea-
sured pressure response and the corresponding pre-
dicted pressure response for a commanded oscillation
of 1.2 Hz. The comparison is excellent and demon-
strates the ability of the method to capture the dom-
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Fig. 4 Pressure impulse response obtained via
deconvolution for the RSM; time domain and fre-
quency domain (magnitude).

inant (driving) frequency while filtering out uncorre-
lated noise. The deconvolution process automatically
identifies the input/output correlations that yield the
impulse response. The process of identifying these cor-
relations for a given input/output pair also has the
added benefit that it filters out any information that
is not correlated to the input. Therefore, uncorrelated
measurement noise, for example, is automatically re-
moved as the impulse response is generated. This
filtering capability is visible in Figure 5(b).

Figure 6 presents the comparison between the mea-
sured pressure response and the corresponding pre-
dicted pressure response for a commanded oscillation
of 10.0 Hz. For this case, without the predicted re-
sponse, it would be very difficult to discern any period-
icity in the measured response. The filtering capability
of the deconvolution method proves to be essential at
this frequency.
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Fig. 5 Measured and predicted pressure responses
due to a 1.2 Hz sinusoidal motion of the OTT
for the RSM; time domain and frequency domain
(magnitude).

At this condition, the linearity of the measured pres-
sure response (for this pressure transducer location) is
defined by the excellent correlation between the exper-
imental results and the results computed using linear
convolution. If predicted results do not compare well
with measured results, this could be an indication that
some nonlinear effect has influenced the measured re-
sponse.

In addition, because deconvolution involves in-
put/output correlation, any uncorrelated white noise
(measurement noise) is easily filtered out. Note that
for several of the examples presented, the filtering
was applied at all uncorrelated frequencies, both low
and high frequencies. Simple low-pass or high-pass
filters would not be able to match this level of filter-
ing capability and much more sophisticated band-pass
filters would have to be introduced. However, even
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Fig. 6 Measured and predicted pressure responses
due to a 10.1 Hz sinusoidal motion of the OTT;
time domain and frequency domain (magnitude).

with band-pass filters, the question of which frequency
range to filter would remain a serious question for the
analyst. Deconvolution automatically handles the fil-
tering without a priori definition of a frequency range
where filtering is desired. Analysis of these results
can subsequently be used to identify regions of linear
and nonlinear behavior which will be helpful in under-
standing dominant flow physics. Additional results are
presented in the references by Silva et al.34

Higher-Order Spectra Results

The goal of the effort by Hajj and Silva35,68 was
to identify nonlinear aspects that led to the flutter
of an HSCT (High Speed Civil Transport) Flexible
Semispan Model (FSM) in experiments conducted at
NASA Langley’s TDT. The high amplitude responses
observed in these experiments present a unique op-
portunity for detecting nonlinear aspects of the flutter
mechanism of this configuration. Of particular interest

is a region of high dynamic response that occurred over
a broad range of dynamic pressures around a Mach
number of 0.98. At the top of this region is a ”hard”
flutter point that resulted in the loss of the model.
The characteristics of the aerodynamic loading and
structural strains and motions, as the ”hard” flutter
is encountered, were determined through analysis of
pressure, strain and acceleration data. The nonlinear
aspects of the flutter mechanism are identified by us-
ing higher-order spectral moments. The use of these
moments to investigate limit cycle responses observed
on fighter aircraft has been also proposed by Stearman
et al.72

Analysis of the data indicated the existence of low
frequency components that were not related to the
modes of the structure. Further insight into the origin
and role of these low frequency components, observed
primarily in the pressure spectra just prior to the flut-
ter incident, can be obtained from the auto-bispectra
of the pressure fluctuations on the upper surface at
x/c=0.55 at the 60% span and at x/c =0.80 at the
95% span, shown in Figure 7. At x/c=0.80, the re-
sults show a high level of nonlinear coupling between
the 0.5 Hz component and the region between 3.0 and
11.0 Hz. This nonlinear coupling has its origin in the
flow field and implies that flow structures with these
frequencies are coupled. On the other hand, there is
no indication of coupling between the 0.5 Hz compo-
nent and the frequency components observed in the
strain gage measurements, namely the 12.7 and the
14.2 Hz components. This suggests that the detected
nonlinear effects in the pressure data at these loca-
tions are predominantly aerodynamic in nature. The
auto-bispectrum at x/c=0.55 at the 60% span sta-
tion exhibits self coupling at the 0.5 Hz component.
Estimates of the auto-bispectrum at other pressure lo-
cations did not show nonlinear coupling at the same
levels observed at these locations. Yet, it is important
to note that, at these locations, the pressure coeffi-
cients are relatively large, in absolute sense.

The extent of nonlinear coupling between frequency
components at both pressure locations are determined
with the cross-bicoherence, shown in Figure 8. The re-
sults show that the 0.5 Hz component at x/c=0.55 at
the 60% span station is coupled with several compo-
nents at x/c=0.80 at the 95% span station. This indi-
cates that pressure forces acting at these locations con-
tain nonlinearly coupled frequency components. The
importance of these results lies in the fact that this
nonlinearity, involving the low frequency components,
was only observed in the data acquired as the flutter
point was approached, and is associated with the for-
mation of the shock. Moreover, this gives insight into
the origin of the low-frequency component observed in
the strain gages at these conditions. Although there
is still much work to be done, these results are very
encouraging.
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AAW Flight Data Analysis

It is important to mention that, historically, non-
linear Volterra series have not seen widespread use in
system synthesis because of the high dimensionality of
the higher order, nonlinear terms. This is true from
experimental, computational, and analytical perspec-
tives. However, recent work by researchers in multires-
olution analysis of the Volterra kernels has shown that
the dimensionality of the higher order terms can be
significantly reduced. This reduction is due to the fact
that wavelet and multiresolution analysis have shown
considerable promise for the compression of signals,
images, and, in particular, some integral operators.
The results by Kurdila et al66 and Prazenica et al,67

using experimental pitch and plunge response data
from the Texas A & M University’s (TAMU) Nonlin-
ear Aeroelastic Testbed (NAT), are excellent examples
of this research effort.

Recently, the multiwavelet-based kernel identifica-
tion algorithm was used to extract Volterra kernels
from flight data of the Active Aeroelastic Wing (AAW)
vehicle.36 A wealth of flight data was gathered dur-
ing subsonic flutter clearance of the AAW. At each
flight condition, the aircraft was subjected to mul-
tisine inputs corresponding to collective and differ-
ential aileron, collective and differential leading edge
flap, rudder, and collective stabilator excitations in
the range of 3 − 35 Hz. The results presented herein
consider accelerometer data measured during the col-
lective aileron sweeps at the flight condition of Mach
number .85 at 10, 000 ft. A single-input/single-output
system was considered, with the input taken as the col-
lective aileron position. This collective position was
obtained as the average of four position transducer
measurements from the right and left ailerons during
the sweep. The output was taken as the response of
an accelerometer mounted towards the forward of the
right wing, just inside the wing fold.

First, second, and third-order Volterra kernels were
extracted from the data at each flight condition. The
effective memory of the kernels was determined to be
1 sec. in each case. The first-order kernel is repre-
sented in terms of 56 multiwavelet coefficients. Taking
into account the symmetry of the kernels, the second
and third-order kernels are represented in terms of 153
and 969 unique coefficients, respectively. The num-
ber of coefficients in the model is directly related to
the number of resolution levels retained in the multi-
wavelet kernel representations. By comparison, for a
memory of 1 sec., or 128 samples, a simple discrete-
time Volterra model would require 128 first-order co-
efficients, 8, 256 second-order coefficients, and 357, 760
third-order coefficients, taking the symmetry of the
kernels into account.

The filtered collective aileron position and the ac-
celerometer response at a flight condition of Mach
.85 at 10, 000 ft are shown in Figure 9. The identi-
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Fig. 9 Collective aileron input and accelerometer
response at Mach .85, 10,000 ft.

fied Volterra kernels and their predicted responses are
depicted in Figures 10 through 12. Once again, the re-
sponse predicted by the first-order kernel is the most
dominant, but there is also significant nonlinear re-
sponse in the 5−10 sec. range. In this case, the second-
order kernel has a small contribution while the third-
order response is relatively large. Figure 13 shows the
predicted linear response compared to the measured
accelerometer response at two intervals in the data set.
The predicted linear response matches the measured
response well in the 12− 14 sec. range. However, it is
clear that the first-order kernel alone cannot account
for the nonlinear response in the 7 − 9 sec. region.
Figure 14 shows the predicted response when the con-
tributions of the second and third-order kernels are
included in the model. In this case, the second-order
kernel does little to improve the approximation. The
addition of the third-order kernel, however, results in
a significant improvement in the prediction.

These results indicate that although the first-order
kernel captured most of the accelerometer response,
it was unable to account for the nonlinear response.
The addition of the second-order kernel contributed
little to the approximation at this flight condition
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Fig. 10 Identified first-order kernel and predicted
response.

but the third-order kernel significantly improved the
approximation. This research demonstrates the appli-
cability of the Volterra theory to flight flutter data of
high-performance aircraft. For additional details, the
reader is referred to the reference.36

Concluding Remarks

The identification of nonlinear aeroelastic systems
based on the Volterra theory of nonlinear systems
was presented. Recent applications of the theory
to problems in experimental aeroelasticity were re-
viewed. Discussion of experimental results included
the identification of aerodynamic impulse responses,
the application of higher-order spectra (HOS) to wind-
tunnel flutter data, and the identification of nonlinear
aeroelastic phenomena from flight flutter test data of
the Active Aeroelastic Wing (AAW) aircraft. The
applicability of the Volterra theory to experimental
problems in nonlinear aeroelasticity has been demon-
strated. The versatility of the Volterra theory, in terms
of its applicability in the time and frequency domains,
is providing a new tool for the analysis and under-
standing of nonlinear aeroelastic phenomena.
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